วันพุธที่ 26 กรกฎาคม พ.ศ. 2560

ฟังก์ชันเอกซ์โพเนนเชียล

 ฟังก์ชันเอกซ์โพเนนเชียล

1. เลขยกกำลัง คือจำนวนที่เขียนในรูป  an โดยเรียก  a  ว่าฐาน และเรียก n ว่า เลขชี้กำลัง (Exponent) ซึ่งถ้าเลขชี้กำลัง  n เป็นจำนวนนับ  แล้ว an จะแทน a  คูณกันเป็นจำนวน   n  ตัว หรือ อ่านเพิ่มเติม

ฟังก์กำลังสอง

ฟังก์กำลังสอง


 ฟังก์ชันกำลังสอง  คือ  ฟังก์ชันที่อยู่ในรูป   y = ax2 + bx + c เมื่อ  a,b,c  เป็นจำนวนจริงใดๆ  และ  0 ลักษณะของกราฟของฟังก์ชันนี้ขึ้นอยู่กับค่าของ a , b  และ   และเมื่อค่าของ   เป็นบวกหรือลบ  จะทำให้ได้กราฟเป็นเส้นโค้งหงายหรือคว่ำ อ่านเพิ่มเติม

ฟังก์ชันเชิงเส้น

ฟังก์ชันเชิงเส้น
ในคณิตศาสตร์ขั้นสูง ฟังก์ชันเชิงเส้น หมายถึง ฟังก์ชันที่เป็น ฟังก์ชันเชิงเส้น มักหมายถึง คณิตศาสตร์ ที่เป็น การสายเส้นตรง ระหว่างสองกลุ่มเวกเตอร์
ตัวอย่าง ถ้า  และ  คือ เวกเตอร์ตัวประสาน ฟังก์ชันเชิงเส้นจะเป็นบรรดาฟังก์ชัน ที่แสดงได้ในรูปร่าง
, โดยที่ M คือ เมตริก
ฟังก์ชัน  จะเป็น การสายเส้นตรง ก็ต่อเมื่อ  เท่านั้น อ่านเพิ่มเติม

ความสัมพันธ์และฟังก์ชัน

ความสัมพันธ์และฟังก์ชัน
คู่อันดับ (Order Pairเป็นการจับคู่สิ่งของโดยถือลำดับเป็นสำคัญ เช่น คู่อันดับ ab จะเขียนแทนด้วย (ab) เรียก a ว่าเป็นสมาชิกตัวหน้า และเรียก b ว่าเป็นสมาชิกตัวหลัง
(การเท่ากับของคู่อันดับ) (ab) = (c, d) ก็ต่อเมื่อ a = c และ b = d อ่านเพิ่มเติม

การนำสมบัติของจำนวนจริงไปใช้ในการแก้สมการกำลังสอง

การนำสมบัติของจำนวนจริงไปใช้ในการแก้สมการกำลังสอง
การนำสมบัติของจำนวนจริงไปใช้ในการแก้สมการกำลังสอง
ตัวแปร : อักษรภาษาอังกฤษตัวเล็ก เช่น x , y ที่ใช้เป็นสัญลักษณ์แทนจำนวน
ค่าคงตัว : ตัวเลขที่แททนจำนวน เช่น 1, 2
นิพจน์ : ข้อความในรูปสัญลักษณื เช่น 2, 3x ,x-8 , อ่านเพิ่มเติม

สมบัติของจำนวนจริงเกี่ยวกับการบวกและการคูณ

สมบัติของจำนวนจริงเกี่ยวกับการบวกและการคูณ
จำนวนตรรกยะ (rational number) เป็นจำนวนจริงที่สามารถเขียนได้ในรูปเศษส่วนของจำนวนเต็มที่ตัวส่วนไม่เป็นศูนย์ และเขียนในรูปทศนิยมซ้ำได้ อ่านเพิ่มเติม

วันพุธที่ 12 กรกฎาคม พ.ศ. 2560

จำนวนจริง

จำนวนจริง

เซตของจำนวนจริงประกอบด้วยสับเซตที่สำคัญ  ได้แก่
- เซตของจำนวนนับ/ เซตของจำนวนเต็มบวก เขียนแทนด้วย  I
                   I = {1,2,3…}
เซตของจำนวนเต็มลบ  เขียนแทนด้วย  I
เซตของจำนวนเต็ม เขียนแทนด้วย I
                   I = { …,-3,-2,-1,0,1,2,3…}     อ่านเพิ่มเติม